You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1150 lines
35 KiB
1150 lines
35 KiB
/** |
|
* \file |
|
* |
|
* \brief Commonly used includes, types and macros. |
|
* |
|
* Copyright (c) 2010-2016 Atmel Corporation. All rights reserved. |
|
* |
|
* \asf_license_start |
|
* |
|
* \page License |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright notice, |
|
* this list of conditions and the following disclaimer. |
|
* |
|
* 2. Redistributions in binary form must reproduce the above copyright notice, |
|
* this list of conditions and the following disclaimer in the documentation |
|
* and/or other materials provided with the distribution. |
|
* |
|
* 3. The name of Atmel may not be used to endorse or promote products derived |
|
* from this software without specific prior written permission. |
|
* |
|
* 4. This software may only be redistributed and used in connection with an |
|
* Atmel microcontroller product. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED |
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF |
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE |
|
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR |
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
* \asf_license_stop |
|
* |
|
*/ |
|
/* |
|
* Support and FAQ: visit <a href="https://www.atmel.com/design-support/">Atmel Support</a> |
|
*/ |
|
|
|
#ifndef UTILS_COMPILER_H |
|
#define UTILS_COMPILER_H |
|
|
|
#include <sam.h> |
|
#include <chip.h> |
|
#include "arduino_due_x.h" |
|
#include "conf_clock.h" |
|
#ifdef SAM3XA_SERIES |
|
#define SAM3XA 1 |
|
#endif |
|
#define UDD_NO_SLEEP_MGR 1 |
|
#define pmc_is_wakeup_clocks_restored() true |
|
|
|
#undef udd_get_endpoint_size_max |
|
#define UDD_USB_INT_FUN USBD_ISR |
|
|
|
/** |
|
* \defgroup group_sam_utils Compiler abstraction layer and code utilities |
|
* |
|
* Compiler abstraction layer and code utilities for AT91SAM. |
|
* This module provides various abstraction layers and utilities to make code compatible between different compilers. |
|
* |
|
* \{ |
|
*/ |
|
#include <stddef.h> |
|
|
|
#if (defined __ICCARM__) |
|
# include <intrinsics.h> |
|
#endif |
|
|
|
#include <sam.h> |
|
#include "preprocessor.h" |
|
|
|
//_____ D E C L A R A T I O N S ____________________________________________ |
|
|
|
#ifndef __ASSEMBLY__ // Not defined for assembling. |
|
|
|
#include <stdio.h> |
|
#include <stdbool.h> |
|
#include <stdint.h> |
|
#include <stdlib.h> |
|
|
|
#ifdef __ICCARM__ |
|
/*! \name Compiler Keywords |
|
* |
|
* Port of some keywords from GCC to IAR Embedded Workbench. |
|
*/ |
|
//! @{ |
|
#define __asm__ asm |
|
#define __inline__ inline |
|
#define __volatile__ |
|
//! @} |
|
|
|
#endif |
|
|
|
#define FUNC_PTR void * |
|
/** |
|
* \def UNUSED |
|
* \brief Marking \a v as a unused parameter or value. |
|
*/ |
|
#ifndef UNUSED |
|
#define UNUSED(x) ((void)(x)) |
|
#endif |
|
|
|
/** |
|
* \def unused |
|
* \brief Marking \a v as a unused parameter or value. |
|
*/ |
|
#define unused(v) do { (void)(v); }while(0) |
|
|
|
/** |
|
* \def barrier |
|
* \brief Memory barrier |
|
*/ |
|
#define barrier() __DMB() |
|
|
|
/** |
|
* \brief Emit the compiler pragma \a arg. |
|
* |
|
* \param arg The pragma directive as it would appear after \e \#pragma |
|
* (i.e. not stringified). |
|
*/ |
|
#define COMPILER_PRAGMA(arg) _Pragma(#arg) |
|
|
|
/** |
|
* \def COMPILER_PACK_SET(alignment) |
|
* \brief Set maximum alignment for subsequent struct and union |
|
* definitions to \a alignment. |
|
*/ |
|
#define COMPILER_PACK_SET(alignment) COMPILER_PRAGMA(pack(alignment)) |
|
|
|
/** |
|
* \def COMPILER_PACK_RESET() |
|
* \brief Set default alignment for subsequent struct and union |
|
* definitions. |
|
*/ |
|
#define COMPILER_PACK_RESET() COMPILER_PRAGMA(pack()) |
|
|
|
|
|
/** |
|
* \brief Set aligned boundary. |
|
*/ |
|
#if (defined __GNUC__) || (defined __CC_ARM) |
|
# define COMPILER_ALIGNED(a) __attribute__((__aligned__(a))) |
|
#elif (defined __ICCARM__) |
|
# define COMPILER_ALIGNED(a) COMPILER_PRAGMA(data_alignment = a) |
|
#endif |
|
|
|
/** |
|
* \brief Set word-aligned boundary. |
|
*/ |
|
#if (defined __GNUC__) || defined(__CC_ARM) |
|
#define COMPILER_WORD_ALIGNED __attribute__((__aligned__(4))) |
|
#elif (defined __ICCARM__) |
|
#define COMPILER_WORD_ALIGNED COMPILER_PRAGMA(data_alignment = 4) |
|
#endif |
|
|
|
/** |
|
* \def __always_inline |
|
* \brief The function should always be inlined. |
|
* |
|
* This annotation instructs the compiler to ignore its inlining |
|
* heuristics and inline the function no matter how big it thinks it |
|
* becomes. |
|
*/ |
|
#ifdef __CC_ARM |
|
# define __always_inline __forceinline |
|
#elif (defined __GNUC__) |
|
#ifdef __always_inline |
|
# undef __always_inline |
|
#endif |
|
# define __always_inline inline __attribute__((__always_inline__)) |
|
#elif (defined __ICCARM__) |
|
# define __always_inline _Pragma("inline=forced") |
|
#endif |
|
|
|
/** |
|
* \def __no_inline |
|
* \brief The function should not be inlined. |
|
* |
|
* This annotation instructs the compiler to ignore its inlining |
|
* heuristics and not inline the function. |
|
*/ |
|
#ifdef __CC_ARM |
|
# define __no_inline __attribute__((noinline)) |
|
#elif (defined __GNUC__) |
|
# define __no_inline __attribute__((__noinline__)) |
|
#elif (defined __ICCARM__) |
|
# define __no_inline _Pragma("inline=never") |
|
#endif |
|
|
|
/*! \brief This macro is used to test fatal errors. |
|
* |
|
* The macro tests if the expression is false. If it is, a fatal error is |
|
* detected and the application hangs up. If TEST_SUITE_DEFINE_ASSERT_MACRO |
|
* is defined, a unit test version of the macro is used, to allow execution |
|
* of further tests after a false expression. |
|
* |
|
* \param expr Expression to evaluate and supposed to be nonzero. |
|
*/ |
|
#ifdef _ASSERT_ENABLE_ |
|
# if defined(TEST_SUITE_DEFINE_ASSERT_MACRO) |
|
// Assert() is defined in unit_test/suite.h |
|
# include "unit_test/suite.h" |
|
# else |
|
#undef TEST_SUITE_DEFINE_ASSERT_MACRO |
|
# define Assert(expr) \ |
|
{\ |
|
if (!(expr)) while (true);\ |
|
} |
|
# endif |
|
#else |
|
# define Assert(expr) ((void) 0) |
|
#endif |
|
|
|
/* Define WEAK attribute */ |
|
#if defined ( __CC_ARM ) /* Keil µVision 4 */ |
|
# define WEAK __attribute__ ((weak)) |
|
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */ |
|
# define WEAK __weak |
|
#elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */ |
|
# define WEAK __attribute__ ((weak)) |
|
#endif |
|
|
|
/* Define NO_INIT attribute */ |
|
#if 0 //ndef NO_INIT |
|
#ifdef __CC_ARM |
|
# define NO_INIT __attribute__((zero_init)) |
|
#elif defined ( __ICCARM__ ) |
|
# define NO_INIT __no_init |
|
#elif defined ( __GNUC__ ) |
|
# define NO_INIT __attribute__((section(".no_init"))) |
|
#endif |
|
#endif |
|
|
|
/* Define RAMFUNC attribute */ |
|
#if defined ( __CC_ARM ) /* Keil µVision 4 */ |
|
# define RAMFUNC __attribute__ ((section(".ramfunc"))) |
|
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */ |
|
# define RAMFUNC __ramfunc |
|
#elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */ |
|
# define RAMFUNC __attribute__ ((section(".ramfunc"))) |
|
#endif |
|
|
|
/* Define OPTIMIZE_HIGH attribute */ |
|
#if defined ( __CC_ARM ) /* Keil µVision 4 */ |
|
# define OPTIMIZE_HIGH _Pragma("O3") |
|
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */ |
|
# define OPTIMIZE_HIGH _Pragma("optimize=high") |
|
#elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */ |
|
# define OPTIMIZE_HIGH __attribute__((optimize("s"))) |
|
#endif |
|
|
|
/*! \name Usual Types |
|
*/ |
|
//! @{ |
|
typedef unsigned char Bool; //!< Boolean. |
|
#ifndef __cplusplus |
|
#ifndef __bool_true_false_are_defined |
|
typedef unsigned char bool; //!< Boolean. |
|
#endif |
|
#endif |
|
typedef int8_t S8 ; //!< 8-bit signed integer. |
|
typedef uint8_t U8 ; //!< 8-bit unsigned integer. |
|
typedef int16_t S16; //!< 16-bit signed integer. |
|
typedef uint16_t U16; //!< 16-bit unsigned integer. |
|
typedef uint16_t le16_t; |
|
typedef uint16_t be16_t; |
|
typedef int32_t S32; //!< 32-bit signed integer. |
|
typedef uint32_t U32; //!< 32-bit unsigned integer. |
|
typedef uint32_t le32_t; |
|
typedef uint32_t be32_t; |
|
typedef int64_t S64; //!< 64-bit signed integer. |
|
typedef uint64_t U64; //!< 64-bit unsigned integer. |
|
typedef float F32; //!< 32-bit floating-point number. |
|
typedef double F64; //!< 64-bit floating-point number. |
|
typedef uint32_t iram_size_t; |
|
//! @} |
|
|
|
|
|
/*! \name Status Types |
|
*/ |
|
//! @{ |
|
typedef bool Status_bool_t; //!< Boolean status. |
|
typedef U8 Status_t; //!< 8-bit-coded status. |
|
//! @} |
|
|
|
|
|
/*! \name Aliasing Aggregate Types |
|
*/ |
|
//! @{ |
|
|
|
//! 16-bit union. |
|
typedef union |
|
{ |
|
S16 s16 ; |
|
U16 u16 ; |
|
S8 s8 [2]; |
|
U8 u8 [2]; |
|
} Union16; |
|
|
|
//! 32-bit union. |
|
typedef union |
|
{ |
|
S32 s32 ; |
|
U32 u32 ; |
|
S16 s16[2]; |
|
U16 u16[2]; |
|
S8 s8 [4]; |
|
U8 u8 [4]; |
|
} Union32; |
|
|
|
//! 64-bit union. |
|
typedef union |
|
{ |
|
S64 s64 ; |
|
U64 u64 ; |
|
S32 s32[2]; |
|
U32 u32[2]; |
|
S16 s16[4]; |
|
U16 u16[4]; |
|
S8 s8 [8]; |
|
U8 u8 [8]; |
|
} Union64; |
|
|
|
//! Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers. |
|
typedef union |
|
{ |
|
S64 *s64ptr; |
|
U64 *u64ptr; |
|
S32 *s32ptr; |
|
U32 *u32ptr; |
|
S16 *s16ptr; |
|
U16 *u16ptr; |
|
S8 *s8ptr ; |
|
U8 *u8ptr ; |
|
} UnionPtr; |
|
|
|
//! Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. |
|
typedef union |
|
{ |
|
volatile S64 *s64ptr; |
|
volatile U64 *u64ptr; |
|
volatile S32 *s32ptr; |
|
volatile U32 *u32ptr; |
|
volatile S16 *s16ptr; |
|
volatile U16 *u16ptr; |
|
volatile S8 *s8ptr ; |
|
volatile U8 *u8ptr ; |
|
} UnionVPtr; |
|
|
|
//! Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. |
|
typedef union |
|
{ |
|
const S64 *s64ptr; |
|
const U64 *u64ptr; |
|
const S32 *s32ptr; |
|
const U32 *u32ptr; |
|
const S16 *s16ptr; |
|
const U16 *u16ptr; |
|
const S8 *s8ptr ; |
|
const U8 *u8ptr ; |
|
} UnionCPtr; |
|
|
|
//! Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. |
|
typedef union |
|
{ |
|
const volatile S64 *s64ptr; |
|
const volatile U64 *u64ptr; |
|
const volatile S32 *s32ptr; |
|
const volatile U32 *u32ptr; |
|
const volatile S16 *s16ptr; |
|
const volatile U16 *u16ptr; |
|
const volatile S8 *s8ptr ; |
|
const volatile U8 *u8ptr ; |
|
} UnionCVPtr; |
|
|
|
//! Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers. |
|
typedef struct |
|
{ |
|
S64 *s64ptr; |
|
U64 *u64ptr; |
|
S32 *s32ptr; |
|
U32 *u32ptr; |
|
S16 *s16ptr; |
|
U16 *u16ptr; |
|
S8 *s8ptr ; |
|
U8 *u8ptr ; |
|
} StructPtr; |
|
|
|
//! Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. |
|
typedef struct |
|
{ |
|
volatile S64 *s64ptr; |
|
volatile U64 *u64ptr; |
|
volatile S32 *s32ptr; |
|
volatile U32 *u32ptr; |
|
volatile S16 *s16ptr; |
|
volatile U16 *u16ptr; |
|
volatile S8 *s8ptr ; |
|
volatile U8 *u8ptr ; |
|
} StructVPtr; |
|
|
|
//! Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. |
|
typedef struct |
|
{ |
|
const S64 *s64ptr; |
|
const U64 *u64ptr; |
|
const S32 *s32ptr; |
|
const U32 *u32ptr; |
|
const S16 *s16ptr; |
|
const U16 *u16ptr; |
|
const S8 *s8ptr ; |
|
const U8 *u8ptr ; |
|
} StructCPtr; |
|
|
|
//! Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. |
|
typedef struct |
|
{ |
|
const volatile S64 *s64ptr; |
|
const volatile U64 *u64ptr; |
|
const volatile S32 *s32ptr; |
|
const volatile U32 *u32ptr; |
|
const volatile S16 *s16ptr; |
|
const volatile U16 *u16ptr; |
|
const volatile S8 *s8ptr ; |
|
const volatile U8 *u8ptr ; |
|
} StructCVPtr; |
|
|
|
//! @} |
|
|
|
#endif // #ifndef __ASSEMBLY__ |
|
|
|
/*! \name Usual Constants |
|
*/ |
|
//! @{ |
|
#define DISABLE 0 |
|
#define ENABLE 1 |
|
#ifndef __cplusplus |
|
#ifndef __bool_true_false_are_defined |
|
#define false (1==0) |
|
#define true (1==1) |
|
#endif |
|
#endif |
|
#ifndef PASS |
|
#define PASS 0 |
|
#endif |
|
#ifndef FAIL |
|
#define FAIL 1 |
|
#endif |
|
#ifndef LOW |
|
#define LOW 0x0 |
|
#endif |
|
#ifndef HIGH |
|
#define HIGH 0x1 |
|
#endif |
|
//! @} |
|
|
|
|
|
#ifndef __ASSEMBLY__ // not for assembling. |
|
|
|
//! \name Optimization Control |
|
//@{ |
|
|
|
/** |
|
* \def likely(exp) |
|
* \brief The expression \a exp is likely to be true |
|
*/ |
|
#ifndef likely |
|
# define likely(exp) (exp) |
|
#endif |
|
|
|
/** |
|
* \def unlikely(exp) |
|
* \brief The expression \a exp is unlikely to be true |
|
*/ |
|
#ifndef unlikely |
|
# define unlikely(exp) (exp) |
|
#endif |
|
|
|
/** |
|
* \def is_constant(exp) |
|
* \brief Determine if an expression evaluates to a constant value. |
|
* |
|
* \param exp Any expression |
|
* |
|
* \return true if \a exp is constant, false otherwise. |
|
*/ |
|
#if (defined __GNUC__) || (defined __CC_ARM) |
|
# define is_constant(exp) __builtin_constant_p(exp) |
|
#else |
|
# define is_constant(exp) (0) |
|
#endif |
|
|
|
//! @} |
|
|
|
/*! \name Bit-Field Handling |
|
*/ |
|
//! @{ |
|
|
|
/*! \brief Reads the bits of a value specified by a given bit-mask. |
|
* |
|
* \param value Value to read bits from. |
|
* \param mask Bit-mask indicating bits to read. |
|
* |
|
* \return Read bits. |
|
*/ |
|
#define Rd_bits( value, mask) ((value) & (mask)) |
|
|
|
/*! \brief Writes the bits of a C lvalue specified by a given bit-mask. |
|
* |
|
* \param lvalue C lvalue to write bits to. |
|
* \param mask Bit-mask indicating bits to write. |
|
* \param bits Bits to write. |
|
* |
|
* \return Resulting value with written bits. |
|
*/ |
|
#define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) |\ |
|
((bits ) & (mask))) |
|
|
|
/*! \brief Tests the bits of a value specified by a given bit-mask. |
|
* |
|
* \param value Value of which to test bits. |
|
* \param mask Bit-mask indicating bits to test. |
|
* |
|
* \return \c 1 if at least one of the tested bits is set, else \c 0. |
|
*/ |
|
#define Tst_bits( value, mask) (Rd_bits(value, mask) != 0) |
|
|
|
/*! \brief Clears the bits of a C lvalue specified by a given bit-mask. |
|
* |
|
* \param lvalue C lvalue of which to clear bits. |
|
* \param mask Bit-mask indicating bits to clear. |
|
* |
|
* \return Resulting value with cleared bits. |
|
*/ |
|
#define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask)) |
|
|
|
/*! \brief Sets the bits of a C lvalue specified by a given bit-mask. |
|
* |
|
* \param lvalue C lvalue of which to set bits. |
|
* \param mask Bit-mask indicating bits to set. |
|
* |
|
* \return Resulting value with set bits. |
|
*/ |
|
#define Set_bits(lvalue, mask) ((lvalue) |= (mask)) |
|
|
|
/*! \brief Toggles the bits of a C lvalue specified by a given bit-mask. |
|
* |
|
* \param lvalue C lvalue of which to toggle bits. |
|
* \param mask Bit-mask indicating bits to toggle. |
|
* |
|
* \return Resulting value with toggled bits. |
|
*/ |
|
#define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask)) |
|
|
|
/*! \brief Reads the bit-field of a value specified by a given bit-mask. |
|
* |
|
* \param value Value to read a bit-field from. |
|
* \param mask Bit-mask indicating the bit-field to read. |
|
* |
|
* \return Read bit-field. |
|
*/ |
|
#define Rd_bitfield( value, mask) (Rd_bits( value, mask) >> ctz(mask)) |
|
|
|
/*! \brief Writes the bit-field of a C lvalue specified by a given bit-mask. |
|
* |
|
* \param lvalue C lvalue to write a bit-field to. |
|
* \param mask Bit-mask indicating the bit-field to write. |
|
* \param bitfield Bit-field to write. |
|
* |
|
* \return Resulting value with written bit-field. |
|
*/ |
|
#define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (U32)(bitfield) << ctz(mask))) |
|
|
|
//! @} |
|
|
|
|
|
/*! \name Zero-Bit Counting |
|
* |
|
* Under GCC, __builtin_clz and __builtin_ctz behave like macros when |
|
* applied to constant expressions (values known at compile time), so they are |
|
* more optimized than the use of the corresponding assembly instructions and |
|
* they can be used as constant expressions e.g. to initialize objects having |
|
* static storage duration, and like the corresponding assembly instructions |
|
* when applied to non-constant expressions (values unknown at compile time), so |
|
* they are more optimized than an assembly periphrasis. Hence, clz and ctz |
|
* ensure a possible and optimized behavior for both constant and non-constant |
|
* expressions. |
|
*/ |
|
//! @{ |
|
|
|
/*! \brief Counts the leading zero bits of the given value considered as a 32-bit integer. |
|
* |
|
* \param u Value of which to count the leading zero bits. |
|
* |
|
* \return The count of leading zero bits in \a u. |
|
*/ |
|
#ifndef clz |
|
#if (defined __GNUC__) || (defined __CC_ARM) |
|
# define clz(u) ((u) ? __builtin_clz(u) : 32) |
|
#elif (defined __ICCARM__) |
|
# define clz(u) ((u) ? __CLZ(u) : 32) |
|
#else |
|
# define clz(u) (((u) == 0) ? 32 : \ |
|
((u) & (1UL << 31)) ? 0 : \ |
|
((u) & (1UL << 30)) ? 1 : \ |
|
((u) & (1UL << 29)) ? 2 : \ |
|
((u) & (1UL << 28)) ? 3 : \ |
|
((u) & (1UL << 27)) ? 4 : \ |
|
((u) & (1UL << 26)) ? 5 : \ |
|
((u) & (1UL << 25)) ? 6 : \ |
|
((u) & (1UL << 24)) ? 7 : \ |
|
((u) & (1UL << 23)) ? 8 : \ |
|
((u) & (1UL << 22)) ? 9 : \ |
|
((u) & (1UL << 21)) ? 10 : \ |
|
((u) & (1UL << 20)) ? 11 : \ |
|
((u) & (1UL << 19)) ? 12 : \ |
|
((u) & (1UL << 18)) ? 13 : \ |
|
((u) & (1UL << 17)) ? 14 : \ |
|
((u) & (1UL << 16)) ? 15 : \ |
|
((u) & (1UL << 15)) ? 16 : \ |
|
((u) & (1UL << 14)) ? 17 : \ |
|
((u) & (1UL << 13)) ? 18 : \ |
|
((u) & (1UL << 12)) ? 19 : \ |
|
((u) & (1UL << 11)) ? 20 : \ |
|
((u) & (1UL << 10)) ? 21 : \ |
|
((u) & (1UL << 9)) ? 22 : \ |
|
((u) & (1UL << 8)) ? 23 : \ |
|
((u) & (1UL << 7)) ? 24 : \ |
|
((u) & (1UL << 6)) ? 25 : \ |
|
((u) & (1UL << 5)) ? 26 : \ |
|
((u) & (1UL << 4)) ? 27 : \ |
|
((u) & (1UL << 3)) ? 28 : \ |
|
((u) & (1UL << 2)) ? 29 : \ |
|
((u) & (1UL << 1)) ? 30 : \ |
|
31) |
|
#endif |
|
#endif |
|
|
|
/*! \brief Counts the trailing zero bits of the given value considered as a 32-bit integer. |
|
* |
|
* \param u Value of which to count the trailing zero bits. |
|
* |
|
* \return The count of trailing zero bits in \a u. |
|
*/ |
|
#ifndef ctz |
|
#if (defined __GNUC__) || (defined __CC_ARM) |
|
# define ctz(u) ((u) ? __builtin_ctz(u) : 32) |
|
#else |
|
# define ctz(u) ((u) & (1UL << 0) ? 0 : \ |
|
(u) & (1UL << 1) ? 1 : \ |
|
(u) & (1UL << 2) ? 2 : \ |
|
(u) & (1UL << 3) ? 3 : \ |
|
(u) & (1UL << 4) ? 4 : \ |
|
(u) & (1UL << 5) ? 5 : \ |
|
(u) & (1UL << 6) ? 6 : \ |
|
(u) & (1UL << 7) ? 7 : \ |
|
(u) & (1UL << 8) ? 8 : \ |
|
(u) & (1UL << 9) ? 9 : \ |
|
(u) & (1UL << 10) ? 10 : \ |
|
(u) & (1UL << 11) ? 11 : \ |
|
(u) & (1UL << 12) ? 12 : \ |
|
(u) & (1UL << 13) ? 13 : \ |
|
(u) & (1UL << 14) ? 14 : \ |
|
(u) & (1UL << 15) ? 15 : \ |
|
(u) & (1UL << 16) ? 16 : \ |
|
(u) & (1UL << 17) ? 17 : \ |
|
(u) & (1UL << 18) ? 18 : \ |
|
(u) & (1UL << 19) ? 19 : \ |
|
(u) & (1UL << 20) ? 20 : \ |
|
(u) & (1UL << 21) ? 21 : \ |
|
(u) & (1UL << 22) ? 22 : \ |
|
(u) & (1UL << 23) ? 23 : \ |
|
(u) & (1UL << 24) ? 24 : \ |
|
(u) & (1UL << 25) ? 25 : \ |
|
(u) & (1UL << 26) ? 26 : \ |
|
(u) & (1UL << 27) ? 27 : \ |
|
(u) & (1UL << 28) ? 28 : \ |
|
(u) & (1UL << 29) ? 29 : \ |
|
(u) & (1UL << 30) ? 30 : \ |
|
(u) & (1UL << 31) ? 31 : \ |
|
32) |
|
#endif |
|
#endif |
|
|
|
//! @} |
|
|
|
|
|
/*! \name Bit Reversing |
|
*/ |
|
//! @{ |
|
|
|
/*! \brief Reverses the bits of \a u8. |
|
* |
|
* \param u8 U8 of which to reverse the bits. |
|
* |
|
* \return Value resulting from \a u8 with reversed bits. |
|
*/ |
|
#define bit_reverse8(u8) ((U8)(bit_reverse32((U8)(u8)) >> 24)) |
|
|
|
/*! \brief Reverses the bits of \a u16. |
|
* |
|
* \param u16 U16 of which to reverse the bits. |
|
* |
|
* \return Value resulting from \a u16 with reversed bits. |
|
*/ |
|
#define bit_reverse16(u16) ((U16)(bit_reverse32((U16)(u16)) >> 16)) |
|
|
|
/*! \brief Reverses the bits of \a u32. |
|
* |
|
* \param u32 U32 of which to reverse the bits. |
|
* |
|
* \return Value resulting from \a u32 with reversed bits. |
|
*/ |
|
#define bit_reverse32(u32) __RBIT(u32) |
|
|
|
/*! \brief Reverses the bits of \a u64. |
|
* |
|
* \param u64 U64 of which to reverse the bits. |
|
* |
|
* \return Value resulting from \a u64 with reversed bits. |
|
*/ |
|
#define bit_reverse64(u64) ((U64)(((U64)bit_reverse32((U64)(u64) >> 32)) |\ |
|
((U64)bit_reverse32((U64)(u64)) << 32))) |
|
|
|
//! @} |
|
|
|
|
|
/*! \name Alignment |
|
*/ |
|
//! @{ |
|
|
|
/*! \brief Tests alignment of the number \a val with the \a n boundary. |
|
* |
|
* \param val Input value. |
|
* \param n Boundary. |
|
* |
|
* \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0. |
|
*/ |
|
#define Test_align(val, n ) (!Tst_bits( val, (n) - 1 ) ) |
|
|
|
/*! \brief Gets alignment of the number \a val with respect to the \a n boundary. |
|
* |
|
* \param val Input value. |
|
* \param n Boundary. |
|
* |
|
* \return Alignment of the number \a val with respect to the \a n boundary. |
|
*/ |
|
#define Get_align( val, n ) ( Rd_bits( val, (n) - 1 ) ) |
|
|
|
/*! \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary. |
|
* |
|
* \param lval Input/output lvalue. |
|
* \param n Boundary. |
|
* \param alg Alignment. |
|
* |
|
* \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary. |
|
*/ |
|
#define Set_align(lval, n, alg) ( Wr_bits(lval, (n) - 1, alg) ) |
|
|
|
/*! \brief Aligns the number \a val with the upper \a n boundary. |
|
* |
|
* \param val Input value. |
|
* \param n Boundary. |
|
* |
|
* \return Value resulting from the number \a val aligned with the upper \a n boundary. |
|
*/ |
|
#define Align_up( val, n ) (((val) + ((n) - 1)) & ~((n) - 1)) |
|
|
|
/*! \brief Aligns the number \a val with the lower \a n boundary. |
|
* |
|
* \param val Input value. |
|
* \param n Boundary. |
|
* |
|
* \return Value resulting from the number \a val aligned with the lower \a n boundary. |
|
*/ |
|
#define Align_down(val, n ) ( (val) & ~((n) - 1)) |
|
|
|
//! @} |
|
|
|
/*! \brief Calls the routine at address \a addr. |
|
* |
|
* It generates a long call opcode. |
|
* |
|
* For example, `Long_call(0x80000000)' generates a software reset on a UC3 if |
|
* it is invoked from the CPU supervisor mode. |
|
* |
|
* \param addr Address of the routine to call. |
|
* |
|
* \note It may be used as a long jump opcode in some special cases. |
|
*/ |
|
#define Long_call(addr) ((*(void (*)(void))(addr))()) |
|
|
|
|
|
/*! \name MCU Endianism Handling |
|
* ARM is MCU little endianism. |
|
*/ |
|
//! @{ |
|
#define MSB(u16) (((U8 *)&(u16))[1]) //!< Most significant byte of \a u16. |
|
#define LSB(u16) (((U8 *)&(u16))[0]) //!< Least significant byte of \a u16. |
|
|
|
#define MSH(u32) (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32. |
|
#define LSH(u32) (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32. |
|
#define MSB0W(u32) (((U8 *)&(u32))[3]) //!< Most significant byte of 1st rank of \a u32. |
|
#define MSB1W(u32) (((U8 *)&(u32))[2]) //!< Most significant byte of 2nd rank of \a u32. |
|
#define MSB2W(u32) (((U8 *)&(u32))[1]) //!< Most significant byte of 3rd rank of \a u32. |
|
#define MSB3W(u32) (((U8 *)&(u32))[0]) //!< Most significant byte of 4th rank of \a u32. |
|
#define LSB3W(u32) MSB0W(u32) //!< Least significant byte of 4th rank of \a u32. |
|
#define LSB2W(u32) MSB1W(u32) //!< Least significant byte of 3rd rank of \a u32. |
|
#define LSB1W(u32) MSB2W(u32) //!< Least significant byte of 2nd rank of \a u32. |
|
#define LSB0W(u32) MSB3W(u32) //!< Least significant byte of 1st rank of \a u32. |
|
|
|
#define MSW(u64) (((U32 *)&(u64))[1]) //!< Most significant word of \a u64. |
|
#define LSW(u64) (((U32 *)&(u64))[0]) //!< Least significant word of \a u64. |
|
#define MSH0(u64) (((U16 *)&(u64))[3]) //!< Most significant half-word of 1st rank of \a u64. |
|
#define MSH1(u64) (((U16 *)&(u64))[2]) //!< Most significant half-word of 2nd rank of \a u64. |
|
#define MSH2(u64) (((U16 *)&(u64))[1]) //!< Most significant half-word of 3rd rank of \a u64. |
|
#define MSH3(u64) (((U16 *)&(u64))[0]) //!< Most significant half-word of 4th rank of \a u64. |
|
#define LSH3(u64) MSH0(u64) //!< Least significant half-word of 4th rank of \a u64. |
|
#define LSH2(u64) MSH1(u64) //!< Least significant half-word of 3rd rank of \a u64. |
|
#define LSH1(u64) MSH2(u64) //!< Least significant half-word of 2nd rank of \a u64. |
|
#define LSH0(u64) MSH3(u64) //!< Least significant half-word of 1st rank of \a u64. |
|
#define MSB0D(u64) (((U8 *)&(u64))[7]) //!< Most significant byte of 1st rank of \a u64. |
|
#define MSB1D(u64) (((U8 *)&(u64))[6]) //!< Most significant byte of 2nd rank of \a u64. |
|
#define MSB2D(u64) (((U8 *)&(u64))[5]) //!< Most significant byte of 3rd rank of \a u64. |
|
#define MSB3D(u64) (((U8 *)&(u64))[4]) //!< Most significant byte of 4th rank of \a u64. |
|
#define MSB4D(u64) (((U8 *)&(u64))[3]) //!< Most significant byte of 5th rank of \a u64. |
|
#define MSB5D(u64) (((U8 *)&(u64))[2]) //!< Most significant byte of 6th rank of \a u64. |
|
#define MSB6D(u64) (((U8 *)&(u64))[1]) //!< Most significant byte of 7th rank of \a u64. |
|
#define MSB7D(u64) (((U8 *)&(u64))[0]) //!< Most significant byte of 8th rank of \a u64. |
|
#define LSB7D(u64) MSB0D(u64) //!< Least significant byte of 8th rank of \a u64. |
|
#define LSB6D(u64) MSB1D(u64) //!< Least significant byte of 7th rank of \a u64. |
|
#define LSB5D(u64) MSB2D(u64) //!< Least significant byte of 6th rank of \a u64. |
|
#define LSB4D(u64) MSB3D(u64) //!< Least significant byte of 5th rank of \a u64. |
|
#define LSB3D(u64) MSB4D(u64) //!< Least significant byte of 4th rank of \a u64. |
|
#define LSB2D(u64) MSB5D(u64) //!< Least significant byte of 3rd rank of \a u64. |
|
#define LSB1D(u64) MSB6D(u64) //!< Least significant byte of 2nd rank of \a u64. |
|
#define LSB0D(u64) MSB7D(u64) //!< Least significant byte of 1st rank of \a u64. |
|
|
|
#define BE16(x) swap16(x) |
|
#define LE16(x) (x) |
|
|
|
#define le16_to_cpu(x) (x) |
|
#define cpu_to_le16(x) (x) |
|
#define LE16_TO_CPU(x) (x) |
|
#define CPU_TO_LE16(x) (x) |
|
|
|
#define be16_to_cpu(x) swap16(x) |
|
#define cpu_to_be16(x) swap16(x) |
|
#define BE16_TO_CPU(x) swap16(x) |
|
#define CPU_TO_BE16(x) swap16(x) |
|
|
|
#define le32_to_cpu(x) (x) |
|
#define cpu_to_le32(x) (x) |
|
#define LE32_TO_CPU(x) (x) |
|
#define CPU_TO_LE32(x) (x) |
|
|
|
#define be32_to_cpu(x) swap32(x) |
|
#define cpu_to_be32(x) swap32(x) |
|
#define BE32_TO_CPU(x) swap32(x) |
|
#define CPU_TO_BE32(x) swap32(x) |
|
//! @} |
|
|
|
|
|
/*! \name Endianism Conversion |
|
* |
|
* The same considerations as for clz and ctz apply here but GCC's |
|
* __builtin_bswap_32 and __builtin_bswap_64 do not behave like macros when |
|
* applied to constant expressions, so two sets of macros are defined here: |
|
* - Swap16, Swap32 and Swap64 to apply to constant expressions (values known |
|
* at compile time); |
|
* - swap16, swap32 and swap64 to apply to non-constant expressions (values |
|
* unknown at compile time). |
|
*/ |
|
//! @{ |
|
|
|
/*! \brief Toggles the endianism of \a u16 (by swapping its bytes). |
|
* |
|
* \param u16 U16 of which to toggle the endianism. |
|
* |
|
* \return Value resulting from \a u16 with toggled endianism. |
|
* |
|
* \note More optimized if only used with values known at compile time. |
|
*/ |
|
#define Swap16(u16) ((U16)(((U16)(u16) >> 8) |\ |
|
((U16)(u16) << 8))) |
|
|
|
/*! \brief Toggles the endianism of \a u32 (by swapping its bytes). |
|
* |
|
* \param u32 U32 of which to toggle the endianism. |
|
* |
|
* \return Value resulting from \a u32 with toggled endianism. |
|
* |
|
* \note More optimized if only used with values known at compile time. |
|
*/ |
|
#define Swap32(u32) ((U32)(((U32)Swap16((U32)(u32) >> 16)) |\ |
|
((U32)Swap16((U32)(u32)) << 16))) |
|
|
|
/*! \brief Toggles the endianism of \a u64 (by swapping its bytes). |
|
* |
|
* \param u64 U64 of which to toggle the endianism. |
|
* |
|
* \return Value resulting from \a u64 with toggled endianism. |
|
* |
|
* \note More optimized if only used with values known at compile time. |
|
*/ |
|
#define Swap64(u64) ((U64)(((U64)Swap32((U64)(u64) >> 32)) |\ |
|
((U64)Swap32((U64)(u64)) << 32))) |
|
|
|
/*! \brief Toggles the endianism of \a u16 (by swapping its bytes). |
|
* |
|
* \param u16 U16 of which to toggle the endianism. |
|
* |
|
* \return Value resulting from \a u16 with toggled endianism. |
|
* |
|
* \note More optimized if only used with values unknown at compile time. |
|
*/ |
|
#define swap16(u16) Swap16(u16) |
|
|
|
/*! \brief Toggles the endianism of \a u32 (by swapping its bytes). |
|
* |
|
* \param u32 U32 of which to toggle the endianism. |
|
* |
|
* \return Value resulting from \a u32 with toggled endianism. |
|
* |
|
* \note More optimized if only used with values unknown at compile time. |
|
*/ |
|
#if (defined __GNUC__) |
|
# define swap32(u32) ((U32)__builtin_bswap32((U32)(u32))) |
|
#else |
|
# define swap32(u32) Swap32(u32) |
|
#endif |
|
|
|
/*! \brief Toggles the endianism of \a u64 (by swapping its bytes). |
|
* |
|
* \param u64 U64 of which to toggle the endianism. |
|
* |
|
* \return Value resulting from \a u64 with toggled endianism. |
|
* |
|
* \note More optimized if only used with values unknown at compile time. |
|
*/ |
|
#if (defined __GNUC__) |
|
# define swap64(u64) ((U64)__builtin_bswap64((U64)(u64))) |
|
#else |
|
# define swap64(u64) ((U64)(((U64)swap32((U64)(u64) >> 32)) |\ |
|
((U64)swap32((U64)(u64)) << 32))) |
|
#endif |
|
|
|
//! @} |
|
|
|
|
|
/*! \name Target Abstraction |
|
*/ |
|
//! @{ |
|
|
|
#define _GLOBEXT_ extern //!< extern storage-class specifier. |
|
#define _CONST_TYPE_ const //!< const type qualifier. |
|
#define _MEM_TYPE_SLOW_ //!< Slow memory type. |
|
#define _MEM_TYPE_MEDFAST_ //!< Fairly fast memory type. |
|
#define _MEM_TYPE_FAST_ //!< Fast memory type. |
|
|
|
typedef U8 Byte; //!< 8-bit unsigned integer. |
|
|
|
#define memcmp_ram2ram memcmp //!< Target-specific memcmp of RAM to RAM. |
|
#define memcmp_code2ram memcmp //!< Target-specific memcmp of RAM to NVRAM. |
|
#define memcpy_ram2ram memcpy //!< Target-specific memcpy from RAM to RAM. |
|
#define memcpy_code2ram memcpy //!< Target-specific memcpy from NVRAM to RAM. |
|
|
|
#define LSB0(u32) LSB0W(u32) //!< Least significant byte of 1st rank of \a u32. |
|
#define LSB1(u32) LSB1W(u32) //!< Least significant byte of 2nd rank of \a u32. |
|
#define LSB2(u32) LSB2W(u32) //!< Least significant byte of 3rd rank of \a u32. |
|
#define LSB3(u32) LSB3W(u32) //!< Least significant byte of 4th rank of \a u32. |
|
#define MSB3(u32) MSB3W(u32) //!< Most significant byte of 4th rank of \a u32. |
|
#define MSB2(u32) MSB2W(u32) //!< Most significant byte of 3rd rank of \a u32. |
|
#define MSB1(u32) MSB1W(u32) //!< Most significant byte of 2nd rank of \a u32. |
|
#define MSB0(u32) MSB0W(u32) //!< Most significant byte of 1st rank of \a u32. |
|
|
|
//! @} |
|
|
|
/** |
|
* \brief Calculate \f$ \left\lceil \frac{a}{b} \right\rceil \f$ using |
|
* integer arithmetic. |
|
* |
|
* \param a An integer |
|
* \param b Another integer |
|
* |
|
* \return (\a a / \a b) rounded up to the nearest integer. |
|
*/ |
|
#define div_ceil(a, b) (((a) + (b) - 1) / (b)) |
|
|
|
#endif // #ifndef __ASSEMBLY__ |
|
|
|
|
|
#ifdef __ICCARM__ |
|
#define SHORTENUM __packed |
|
#elif defined(__GNUC__) |
|
#define SHORTENUM __attribute__((packed)) |
|
#endif |
|
|
|
/* No operation */ |
|
#ifdef __ICCARM__ |
|
#define nop() __no_operation() |
|
#elif defined(__GNUC__) |
|
#define nop() (__NOP()) |
|
#endif |
|
|
|
#define FLASH_DECLARE(x) const x |
|
#define FLASH_EXTERN(x) extern const x |
|
#define PGM_READ_BYTE(x) *(x) |
|
#define PGM_READ_WORD(x) *(x) |
|
#define PGM_READ_DWORD(x) *(x) |
|
#define MEMCPY_ENDIAN memcpy |
|
#define PGM_READ_BLOCK(dst, src, len) memcpy((dst), (src), (len)) |
|
|
|
/*Defines the Flash Storage for the request and response of MAC*/ |
|
#define CMD_ID_OCTET (0) |
|
|
|
/* Converting of values from CPU endian to little endian. */ |
|
#define CPU_ENDIAN_TO_LE16(x) (x) |
|
#define CPU_ENDIAN_TO_LE32(x) (x) |
|
#define CPU_ENDIAN_TO_LE64(x) (x) |
|
|
|
/* Converting of values from little endian to CPU endian. */ |
|
#define LE16_TO_CPU_ENDIAN(x) (x) |
|
#define LE32_TO_CPU_ENDIAN(x) (x) |
|
#define LE64_TO_CPU_ENDIAN(x) (x) |
|
|
|
/* Converting of constants from little endian to CPU endian. */ |
|
#define CLE16_TO_CPU_ENDIAN(x) (x) |
|
#define CLE32_TO_CPU_ENDIAN(x) (x) |
|
#define CLE64_TO_CPU_ENDIAN(x) (x) |
|
|
|
/* Converting of constants from CPU endian to little endian. */ |
|
#define CCPU_ENDIAN_TO_LE16(x) (x) |
|
#define CCPU_ENDIAN_TO_LE32(x) (x) |
|
#define CCPU_ENDIAN_TO_LE64(x) (x) |
|
|
|
#define ADDR_COPY_DST_SRC_16(dst, src) ((dst) = (src)) |
|
#define ADDR_COPY_DST_SRC_64(dst, src) ((dst) = (src)) |
|
|
|
/** |
|
* @brief Converts a 64-Bit value into a 8 Byte array |
|
* |
|
* @param[in] value 64-Bit value |
|
* @param[out] data Pointer to the 8 Byte array to be updated with 64-Bit value |
|
* @ingroup apiPalApi |
|
*/ |
|
static inline void convert_64_bit_to_byte_array(uint64_t value, uint8_t *data) |
|
{ |
|
uint8_t val_index = 0; |
|
|
|
while (val_index < 8) |
|
{ |
|
data[val_index++] = value & 0xFF; |
|
value >>= 8; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Converts a 16-Bit value into a 2 Byte array |
|
* |
|
* @param[in] value 16-Bit value |
|
* @param[out] data Pointer to the 2 Byte array to be updated with 16-Bit value |
|
* @ingroup apiPalApi |
|
*/ |
|
static inline void convert_16_bit_to_byte_array(uint16_t value, uint8_t *data) |
|
{ |
|
data[0] = value & 0xFF; |
|
data[1] = (value >> 8) & 0xFF; |
|
} |
|
|
|
/* Converts a 16-Bit value into a 2 Byte array */ |
|
static inline void convert_spec_16_bit_to_byte_array(uint16_t value, uint8_t *data) |
|
{ |
|
data[0] = value & 0xFF; |
|
data[1] = (value >> 8) & 0xFF; |
|
} |
|
|
|
/* Converts a 16-Bit value into a 2 Byte array */ |
|
static inline void convert_16_bit_to_byte_address(uint16_t value, uint8_t *data) |
|
{ |
|
data[0] = value & 0xFF; |
|
data[1] = (value >> 8) & 0xFF; |
|
} |
|
|
|
/* |
|
* @brief Converts a 2 Byte array into a 16-Bit value |
|
* |
|
* @param data Specifies the pointer to the 2 Byte array |
|
* |
|
* @return 16-Bit value |
|
* @ingroup apiPalApi |
|
*/ |
|
static inline uint16_t convert_byte_array_to_16_bit(uint8_t *data) |
|
{ |
|
return (data[0] | ((uint16_t)data[1] << 8)); |
|
} |
|
|
|
/* Converts a 8 Byte array into a 32-Bit value */ |
|
static inline uint32_t convert_byte_array_to_32_bit(uint8_t *data) |
|
{ |
|
union |
|
{ |
|
uint32_t u32; |
|
uint8_t u8[8]; |
|
}long_addr; |
|
uint8_t index; |
|
for (index = 0; index < 4; index++) { |
|
long_addr.u8[index] = *data++; |
|
} |
|
return long_addr.u32; |
|
} |
|
|
|
/** |
|
* @brief Converts a 8 Byte array into a 64-Bit value |
|
* |
|
* @param data Specifies the pointer to the 8 Byte array |
|
* |
|
* @return 64-Bit value |
|
* @ingroup apiPalApi |
|
*/ |
|
static inline uint64_t convert_byte_array_to_64_bit(uint8_t *data) |
|
{ |
|
union |
|
{ |
|
uint64_t u64; |
|
uint8_t u8[8]; |
|
} long_addr; |
|
|
|
uint8_t val_index; |
|
|
|
for (val_index = 0; val_index < 8; val_index++) |
|
{ |
|
long_addr.u8[val_index] = *data++; |
|
} |
|
|
|
return long_addr.u64; |
|
} |
|
/** |
|
* \} |
|
*/ |
|
|
|
#endif /* UTILS_COMPILER_H */
|
|
|